New Automated Method to Develop Geometrically Corrected Time Series of Brightness Temperatures from Historical AVHRR LAC Data

نویسندگان

  • Sajid Pareeth
  • Luca Delucchi
  • Markus Metz
  • Duccio Rocchini
  • Abhay Devasthale
  • Martin Raspaud
  • Rita Adrian
  • Nico Salmaso
  • Markus Neteler
چکیده

Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily observations for the last 30 years at a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions and orbital drifts with the earlier missions hinder the usage of these images at their original resolution. In this study, we developed a new method using multiple open source tools which can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform precise geo-rectification by automated generation and filtering of ground control points using a feature matching technique. The entire workflow is reproducible and extendable to any other geographical location. We developed a time series of brightness temperature maps from AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986–2014; 28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE calculated over available same day observations between the pairs—NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with in-situ data shows high accuracy with mean R2 and RMSE of 0.97 and 0.91 K respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibrating historical IR sensors using GEO and AVHRR infrared tropical mean calibration models

Long-term, remote-sensing-based climate data records (CDRs) are highly dependent on having consistent, wellcalibrated satellite instrument measurements of the Earth’s radiant energy. Therefore, by making historical satellite calibrations consistent with those of today’s imagers, the Earth-observing community can benefit from a CDR that spans a minimum of 30 years. Most operational meteorologica...

متن کامل

Effects of orbital drift on land surface temperature measured by AVHRR thermal sensors

The NOAA series of meteorological satellites that carry the Advanced Very High Resolution Radiometer (AVHRR) suffer from orbital drift so that during each satellite’s duty period the overpass time occurs later in the day. Replacement satellites restore the overpass time temporarily, but then it gradually decays. The goals of this paper are to document the effects of variable observation time ow...

متن کامل

Land-cover classi cation methods for multi-year AVHRR data

AdvancedVery HighResolutionRadiometer (AVHRR) data have been extensively used for global land-cover classiŽ cation, but few studies have taken direct and full advantage of the multi-year properties of AVHRR data. This study focused on generating eVective classiŽ cation features from multi-year AVHRR data to improve classiŽ cation accuracy.Three types of features were derived from 12-year monthl...

متن کامل

Spectral Matching Techniques to Determine Historical Land-use/Land-cover (LULC) and Irrigated Areas Using Time-series 0.1-degree AVHRR Pathfinder Datasets

0099-1112/07/7309–1029/$3.00/0 © 2007 American Society for Photogrammetry and Remote Sensing Abstract This study established spectral matching techniques (SMTs) to determine land-use and land-cover (LULC) and irrigated area classes from historical time-series (HTS-LULC) AVHRR 0.1-degree pathfinder satellite sensor data. The approach for HTS-LULC mapping and characterization was to develop “targ...

متن کامل

Assessment of Mono- and Split-Window Approaches for Time Series Processing of LST from AVHRR - A TIMELINE Round Robin

Processing of land surface temperature from long time series of AVHRR (Advanced Very High Resolution Radiometer) requires stable algorithms, which are well characterized in terms of accuracy, precision and sensitivity. This assessment presents a comparison of four mono-window (Price 1983, Qin et al., 2001, Jiménez-Muñoz and Sobrino 2003, linear approach) and six split-window algorithms (Price 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016